CH131 Fall 2020 topics and assigned problems Oxtoby et al., Principles of Modern Chemistry, 8e.

Chapter 1, Appendices A, B.1, and C.3: The atom in modern chemistry Periodic table is the master key to chemical properties Isotopes, atomic weight Chemist's dozen: The mole Chapter 1 problems: 5, 7, 11, 13, 17, 19, 21, 23, 25, 27, 31, 33, 35 Appendix A problems: 1, 7, 11, 13, 17, 19 Appendix B.1 problems: 1, 7, 9 Appendix C.3 problems: 13, 17, 19
Chapter 2: Chemical formulas, equations, and reaction yields Significant figures: $a \times b$, $a + b$, 10^a , log (b) Example problems Limiting reagent recipe Chapter 2 problems: 1, 5, 7, 11, 13, 19, 21, 23, 25, 27, 29, 31, 35, 37, 49;
Chapter 3: Atomic shells and classical models of chemical bonding Ionization energy: $X(g) \rightarrow X^+(g) + e^-$, electron cloud shell structure Electron affinity: $X^-(g) \rightarrow X(g) + e^-$ Electronegativity: $EN \sim IE_1 + EA$ Dipole moment and ionic character: $\sim \Delta EN$ Lewis diagrams; formal charge Shapes and polarity of molecules Chapter 3 problems: 9, 15, 21, 23, 33, 39, 41, 43, 45, 47, 51, 53, 55, 57, 59, 61, 65, 69
 Chapter 9: The gaseous state Gas properties: Temperature, volume, amount, and pressure Ideal gas law: <i>PV</i> = <i>nRT</i> Gas constant <i>R</i>, STP, and SATP Gas law calculations recipe Dalton's law of partial pressures LR (Limiting Reagent) tables in calculations of gaseous chemical reactions Kinetic theory of gases Why the ideal gas law does not depend of particle mass Maxwell-Boltzmann distribution of molecular speeds Real gases: van der Waals equation, van der Waals <i>a</i> and <i>b</i> Chapter 9 problems: 5, 9, 11, 19, 21, 25, 27, 31, 33, 35, 37, 41, 43, 47, 53, 55
Chapter 10: Solids, liquids, and phase transitions IMFs: H-bond, dipole-dipole, London. Determinants of relative boiling points: H-bond > London (size, lone pairs) > dipole-dipole Vapor pressure: Liquid-vapor equilibrium; vapor-pressure and boiling (include altitude for which boiling point is body temperature) Phase diagrams: phase equilibrium; triple point; supercritical region

Chapter 10 problems: 15, 17, 21, 23, 25, 27, 31, 35, 37, 39, 43, 45, 47

Chapter 11: Colligative properties: Vapor pressure lowering Boiling point elevation Freezing point depression **Osmotic pressure** Chapter 11 problems: 1, 3, 5, 11, 41, 43, 45, 47, 51, 53, 55, 57, 59, 61 Chapter 12: Thermodynamic processes and thermochemistry System and surroundings **First law**: $\Delta U = q + w$, all system quantities $q_{\rm sys} = -q_{\rm sur} = mc\Delta T_{\rm sur}$ $w_{\rm svs} = w_{\rm PV} = -P_{\rm sur} \Delta V_{\rm svs}$ $\Delta U = q_{\rm V}$ If $w \neq 0$, then $\Delta H \equiv q_{\rm P} \neq q_{\rm V}$ Typically, $\Delta U - \Delta H = w_{PV}$ is small $\Delta H \equiv q_{\rm P}$ appropriate for constant pressure processes ΔH_{rxn} is q_P for 1 unit of reaction; q_P depends on how many units of reaction occur Hess's law ΔH°_{rxn} is q_{P} for 1 unit of reaction when each reactant and product is in its standard state ΔH°_{f} is q_{P} for 1 mole of substances formed from its elements, each in their standard state. $\Delta H^{\circ}_{rxn} = \text{products } \Delta H^{\circ}_{f} - \text{reactants } \Delta H^{\circ}_{f}$ Bond enthalpies, ΔH_{bond} $\Delta H^{\circ}_{rxn} \approx reactants \Delta H_{bond} - products \Delta H_{bond}$ Chapter 12 problems: 1, 7, 9, 11, 17, 19, 21, 27, 31, 33, 35, 39, 43, 45, 47, 55, 57 Chapter 13: Spontaneous processes Spontaneous: $W_f > W_i$ **Second Law**: Entropy: $S = k_B \ln(W)$, $\Delta S = k_B \ln(\frac{W_f}{W_f})$ $\Delta S = \frac{\Delta H}{T}$ Spontaneity of phase transitions: $\Delta S_{\text{tot}} = \Delta S_{\text{sur}} + \Delta S_{\text{sys}} = -\frac{\Delta H_{\text{tran}}}{T} + \frac{\Delta H_{\text{tran}}}{T_{\text{tran}}}$ Third Law: Absolute entropies, S° $\Delta S^{\circ}_{rxn} = products S^{\circ} - reactants S^{\circ}$ Spontaneity of chemical reactions: $\Delta S_{tot} = \Delta S_{sur} + \Delta S_{sys} = -\frac{\Delta H^{\circ}_{rxn}}{\tau} + \Delta S^{\circ}_{rxn}$ Gibbs free emery change: $\Delta G^{\circ}_{rxn} \equiv -T \Delta S_{tot} = \Delta H^{\circ}_{rxn} - T \Delta S^{\circ}_{rxn}$ Chapter 13 problems: 3, 9, 11, 13, 15, 17, 21, 25, 29, 31, 33, 35, 57 Chapter 14: Chemical equilibrium Approach to equilibrium Law of mass action; empirical equilibrium constant; thermodynamic equilibrium constant $\Delta G = RT \ln\left(\frac{Q}{K}\right) = \Delta G^{\circ} + RT \ln\left(Q\right) \text{ and } \Delta G^{\circ} = -RT \ln\left(K\right)$ Q/K predicts direction of change Using ICE (Initial, Change, Equilibrium) tables to calculate equilibrium values

Exact calculations when *K* is close to 1.

Approximate calculation when $K \ll 1$: Initially arrange to be all reactants

Approximate calculation when $K \gg 1$: Initially arrange to be all products

Temperature dependence of *K* to get ΔH°_{rxn} and ΔS°_{rxn}

Van't Hoff equation: Predict temperature dependence of K

Response to disturbing equilibrium: Volume, pressure, amounts

Le Châtelier's principle

Chapter 14 problems: 1, 5, 9, 11, 13, 15, 17, 19, 21, 25, 27, 31, 33, 39, 41, 45, 49, 51, 53, 61, 63, 65, 67

Chapter 15: Acid-base equilibria Water autoionization, pH, temperature dependence Acids and bases Strong acids; strong bases Weak acids; weak bases Weak acid titration; weak base titration Chapter 15 problems: 1, 13, 15, 17, 21, 23, 27, 29, 31, 33, 35, 37, 39, 41, 51, 53 Chapter 16: Solubility equilibria Five kinds of problems Practice Chapter 16 problems: 3, 5, 7, 9, 13, 15, 17, 19, 21, 23, 25, 27, 31, 33 Chapter 17: Electron transfer reactions and electrochemistry Oxidation number; oxidation and reduction Balancing redox equations Electrochemical cells Cell voltage and standard reduction potentials Nernst equation: Cell voltage, electrical work, and free energy change **Concentration cells** Chapter 17 problems: 1, 3, 5, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 51, 53, 57